• +91 9971497814
  • info@interviewmaterial.com

Chapter 6- कार्य, ऊर्जा और शक्ति (Work Energy and Power) Interview Questions Answers

Question 1 :
किसी वस्तु पर किसी बल द्वारा किए गए कार्य का चिह्न समझना महत्त्वपूर्ण है। सावधानीपूर्वक बताइए कि निम्नलिखित राशियाँ धनात्मक हैं या ऋणात्मक –
(a) किसी व्यक्ति द्वारा किसी कुएँ में से रस्सी से बँधी बाल्टी को रस्सी द्वारा बाहर निकालने में किया गया कार्य।
(b) उपर्युक्त स्थिति में गुरुत्वीय बल द्वारा किया गया कार्य।
(c) किसी आनत तल पर फिसलती हुई किसी वस्तु पर घर्षण द्वारा किया गया कार्य।
(d) किसी खुरदरे क्षैतिज तल पर एकसमान वेग से गतिमान किसी वस्तु पर लगाए गए बल द्वारा किया गया कार्य।
(e) किसी दोलायमान लोलक को विरामावस्था में लाने के लिए वायु के प्रतिरोधी बल द्वारा किया गया कार्य।

Answer 1 :

(a) चूँकि मनुष्य द्वारा लगाया गया बल तथा बाल्टी का विस्थापन दोनों ऊपर की ओर दिष्ट हैं; अत: कार्य धनात्मक होगा।
(b) चूँकि गुरुत्वीय बल नीचे की ओर दिष्ट है तथा बाल्टी का विस्थापन ऊपर की ओर है; अतः गुरुत्वीय बल द्वारा किया गया कार्य ऋणात्मक होगा।
(c) चूँकि घर्षण बेल सदैव वस्तु के विस्थापन की दिशा के विपरीत दिष्ट होता है; अत: घर्षण बल द्वारा किया गया कार्य ऋणात्मक होगा।
(d) वस्तु पर लगाया गया बल घर्षण के विपरीत अर्थात् वस्तु की गति की दिशा में है; अत: इस बल द्वारा कृत कार्य धनात्मक होगा।
(e) वायु का प्रतिरोधी बल सदैव गति के विपरीत दिष्ट होता है; अतः कार्य ऋणात्मक होगा।

Question 2 :
2kg द्रव्यमान की कोई वस्तु जो आरम्भ में विरामावस्था में है, 7N के किसी क्षैतिज बल के प्रभाव से एक मेज पर गति करती है। मेज का गतिज-घर्षण गुणांक 0:1 है। निम्नलिखित का परिकलन कीजिए और अपने परिणामों की व्याख्या कीजिए –
(a) लगाए गए बल द्वारा 10 s में किया गया कार्य।
(b) घर्षण द्वारा 10 s में किया गया कार्य।
(c) वस्तु पर कुल बल द्वारा 10 s में किया गया कार्य।
(d) वस्तु की गतिज ऊर्जा में 10 s में परिवर्तन।

Answer 2 :


व्याख्या गतिज ऊर्जा में कुल-परिवर्तन (625 J) बाह्य बल द्वारा किए गए कार्य (875 J) से कम है। इसका कारण यह है कि बाह्य बल के द्वारा किए गए कार्य का कुछ भाग घर्षण के प्रभाव को समाप्त करने में व्यय होता है।

Question 3 : चित्र – 6.1 में कुछ एकविमीय स्थितिज ऊर्जा-फलनों के उदाहरण दिए गए हैं। कण की कुल ऊर्जा कोटि-अक्ष पर क्रॉस द्वारा निर्देशित की गई है। प्रत्येक स्थिति में, कोई ऐसे क्षेत्र बंताइए, यदि कोई हैं तो जिनमें दी गई ऊर्जा के लिए, कण को नहीं पाया जा सकता। इसके अतिरिक्त, कण की कुल न्यूनतम ऊर्जा भी निर्देशित कीजिए। कुछ ऐसे भौतिक सन्दर्भो के विषय में सोचिए जिनके लिए ये स्थितिज ऊर्जा आकृतियाँ प्रासंगिक हों।

Answer 3 :

K.E. + P.E. = E (constant)
∴ K.E. = E – P.E.

(a) इस ग्राफ में x < a के लिए स्थितिज ऊर्जा वक्र, दूरी अक्ष के साथ सम्पाती है (P.E. = O) जबकि x > a के लिए स्थितिज ऊर्जा कुल ऊर्जा से अधिक है; अतः गतिज ऊर्जा ऋणात्मक हो जाएगी जो कि असम्भव है।

अतः कण x > a क्षेत्र में नहीं पाया जा सकता।

Question 4 : रेखीय सरल आवर्त गति कर रहे किसी कण का (d) स्थितिज ऊर्जा फलन v (x) = 1/2 kx2 / 2 है, जहाँ k दोलक का बल नियतांक है। k= 0.5 N m-1 के लिए v (x) x के मध्य ग्राफ चित्र-6.2 में दिखाया गया है। यह दिखाइए कि इस विभव के अन्तर्गत गतिमान कुल 1J ऊर्जा वाले कण को अवश्य हीवापस आना चाहिए जब यह x = ± 2 m पर पहुँचता है।

Answer 4 :