• +91 9971497814
  • info@interviewmaterial.com

Chapter 1- समुच्चय (Sets) Ex-1.5 Interview Questions Answers

Question 1 :
मान लीजिए कि U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 4}, B = {2, 4, 6, 8} और C = {3, 4, 5, 6} तो निम्नलिखित को ज्ञात कीजिए:
(i) A’
(ii) B’
(iii) (A ∪ C)’
(iv) (A ∪ B)’
(v) (A’)’
(vi) (B – C)’

Answer 1 :

(i) A’ = U – A = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {1, 2, 3, 4} = {5, 6, 7, 8, 9}
(ii) B’ = U – B = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 4, 6, 8} = {1, 3, 5, 7, 9)
(iii) A ∪ C = {1, 2, 3, 4} ∪ {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6} (A ∪ C)’ = U – (A ∪ C) = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {1, 2, 3, 4, 5, 6} = {7, 8, 9}
(iv) A ∪ B = {1, 2, 3, 4} ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 6, 8} (A ∪ B)’ = U – (A ∪B) = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {1, 2, 3, 4, 6, 8} = {5, 7, 9} (v) (A)’ = U – A = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {1, 2, 3, 4} = {5, 6, 7, 8, 9} (A’)’ = U- A’ = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {5, 6, 7, 8, 9} = {1, 2, 3, 4}
(vi) B – C = {2, 4, 6, 8} – {3, 4, 5, 6} = {2, 8} (B – C)’ = U – (B – C) = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2,8} = {1, 3, 4, 5, 6, 7, 9}

Question 2 :
यदि U = {a, b, c, d, e, f, g, h}, तो निम्नलिखित समुच्चयों के पूरक ज्ञात कीजिये:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}

Answer 2 :

(i) A’ = U – A = {a, b, c, d, e, f, g, h} – {a, b,c} = {d, e, f, g, h}
(ii) B’ = U – B = {a, b, c, d, e, f, g, h} – {d, e, f, g} = {a, b, c, h}
(iii) C = U – C = {a, b, c, d, e, f, g, h} – {a, c, e, g} = {b, d, f, h}
(iv) D’ = U – D = {a, b, c, d, e, f, g, h} – {f, g, h, a} = {b, c, d, e}.

Question 3 :
प्राकृत संख्याओं के समुच्चय को सार्वत्रिक समुच्चय मानते हुए, निम्नलिखित समुच्चयों के पूरक लिखिए:
(i) {x : x एक प्राकृत सम संख्या है।}
(ii) {x : x एक प्राकृत विषम संख्या है।}
(iii) {x : x संख्या 3 को एक धन गुणज है।}
(iv) {x : x एक अभाज्य संख्या है।}
(v) {x : x, 3 और 5 से विभाजित होने वाली एक संख्या है।}
(vi) {x : x एक पूर्ण वर्ग संख्या है।}
(vii) {x : x एक पूर्ण घन संख्या है।}
(viii){x : x + 5 = 8}
(ix) {x : 2x + 5 = 9}
(x) {x : x ≥ 7}
(xi) {x : x ∈ N और 2x + 1 > 10}

Answer 3 :

(i) {x : x एक विषम प्राकृत संख्या है।}
(ii) {x : एक सम संख्या है।}
(iii) {x : x ∈ N और x संख्या 3 का धन गुणज नहीं है।}
(iv) {x : x = 1 और x एक धन भाज्य संख्या है।}
(v) {x : x ∈ N और x, संख्या 3 व 5 किसी से भी विभाजित नहीं होती।}
(vi) {x : x ∈ N तथा x एक पूण वर्ग संख्या नहीं है।}
(vii) {x : x ∈ N तथा x एक पूर्ण वर्ग घन संख्या नहीं है।}
(viii) {x : x ∈ N तथा x ≠ 3}
(ix) {x : x ∈ N तथा x ≠ 2}
(x) {x : x ∈ N तथा x < 7}
(xi) {x : x ∈ N तथा x <  }

Question 4 :
यदि U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} और B = {2, 3, 5, 7}, तो सत्यापित कीजिए कि:
(i) (A ∪ B)’ = A’ ∩ B’
(ii) (A ∩ B)’ = A’ ∪ B’

Answer 4 :

(i) A ∪ B = {2, 4, 6, 8} ∪{2, 3, 5, 7} = {2, 3, 4, 5, 6, 7, 8}
बायाँ पक्ष = (A ∪B)’ = U – (A ∪ B) = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 3, 4, 5, 6, 7, 8} = {1, 9}
A’ = U – A = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 4, 6, 8} = {1, 3, 5, 7, 9}
B’ = U – B = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2, 3, 5, 7} = {1, 4, 6, 8, 9}
दायाँ पक्ष = A’ ∩ B’ = {1, 3, 5, 7, 9} ∩ {1, 4, 6, 8, 9} = {1, 9}
अतः (A ∪ B)’ = A’ ∩ B’.
(ii) बायाँ पक्ष = (A ∩B)’
(A ∩B) = {2, 4, 6, 8} ∩ {2, 3, 5, 7} = {2}
(A ∩ B)’ = {1, 2, 3, 4, 5, 6, 7, 8, 9} – {2} = {1, 3, 4, 5, 6, 7, 8, 9}
दायाँ पक्ष : A’ ∪ B’ = {1, 3, 5, 7, 9} ∪ {1, 4, 6, 8, 9} = {1, 3, 4, 5, 6, 7, 8, 9}
अत: (A ∩ B)’ = A’ ∪ B’.

Question 5 :
निम्नलिखित में से प्रत्येक के लिए उपयुक्त वेन आरेख खींचिए।
(i) (A ∪ B)’
(ii) A’ ∩ B’
(iii) (A ∩B)’
(iv) (A’ ∪ B’)

Answer 5 : छायांकित क्षेत्र को निम्नलिखित समुच्चयों द्वारा दर्शाते हैं:

Question 6 : मान लीजिए कि किसी समतल में स्थित सभी त्रिभुजों का समुच्चय सार्वत्रिक समुच्चय U है। यदि A उन सभी त्रिभुजों का समुच्चय हैं जिनमें कम से कम एक कोण 60° से भिन्न है, तो A’ क्या है?

Answer 6 :

U = {x : समतल में एक त्रिभुज है।}
A = {x : x एक त्रिभुज जिसका कम से कम एक कोण 60° का न हो।}
A’ = {सभी समबाहु त्रिभुजों का समुच्चय है।}

Question 7 :
निम्नलिखित कथनों को सत्य बनाने के लिए रिक्त स्थान भरिए:
(i) A ∪ A’ = ………..
(ii) Φ’ ∩ A = ………..
(iii) A ∩A’ = ………….
(iv) U’ ∩ A = …………

Answer 7 :

(i) A ∪ A’ = U
(ii) Φ’ ∩ A = U ∩ A = A
(iii) A ∩A’ = Φ
(iv) U’ ∩ A = Φ ∩ A = Φ


Selected

 

Chapter 1- समुच्चय (Sets) Ex-1.5 Contributors

krishan

Share your email for latest updates

Name:
Email:

Our partners