• +91 9971497814
  • info@interviewmaterial.com

Chapter 13- त्रिभुज Ex-13-e Interview Questions Answers

Question 1 : नीचे कुछ त्रिभुज के जोड़े दिए गए हैं। उनकी नाप भुजाओं के साथ लिख दी गई है। ‘समकोण-कर्ण-भुजा सर्वांगसमता का प्रयोग करके बताइए कि कौन-कौन से त्रिभुज सर्वांगसम है? परिणाम को सांकेतिक रूप में लिखिए।

Answer 1 :

(i) ΔADB तथा ΔACB में,
AD = BC = 2 सेमी
∠ADB = ∠ACB = 90°
तथा AB = AB = 3.5 सेमी
अतः ΔADB = ΔACB
 
(ii) ΔADB तथा ΔADC में,
AB = AC = 3 सेमी
AD = AD (उभयनिष्ठ)
∠ADB = ∠ADC = 90°
सर्वांगसमता के ‘समकोण-कर्ण-भुजा’ नियम से
ΔADB = ΔADC
 
(iii) ΔOAD तथा ΔOBC में,
∠OAD = ∠OBC = 90°
OD = OC = 2.4 सेमी
OA = OB = 2 सेमी
सर्वांगसमता के ‘समकोण-कर्ण-भुजा’ नियम से
ΔOAD = ΔOBC
 

Question 2 : BD और CE, ΔABC की भुजाओं AC और AB पर क्रमशः लम्ब खींचे गए हैं और BD = CE
(i) क्या ΔDBC = ΔCBE ?
(ii) भुजा EB और भुजा CD में क्या सम्बन्ध होगा?

Answer 2 :

(i)
∠CEB = ∠BDC = 90°
भुजा BD = भुजा CE (दिया है)।
भुजा BC = भुजा BC (उभयनिष्ठ)
ΔDBC = ΔCBE

(ii) 
ΔDBC = ΔCBE
अतः भुजा EB = भुजा CD

Question 3 : उस प्रतिबंध को अभ्यास पुस्तिका पर लिखिए जबकि दो समकोण त्रिभुज सर्वांगसम होंगे।

Answer 3 : यदि एक समकोण त्रिभुज का कर्ण और एक भुजा दूसरे समकोण त्रिभुज के कर्ण और एक भुजा के बराबर हो, तो दोनों त्रिभुज सर्वांगसम होंगे। इसे ‘समकोण-कर्ण-भुजा’ (R.H.S.) सर्वांगसमता कहते हैं।

Question 4 : त्रिभुज ΔARC की रचना कीजिये जबकि AC = 13 सेमी, BC = 5 सेमी तथा ∠B = समकोण है। त्रिभुज के तीनों कोणों का योगफले इसे कीजिए तथा निष्कर्ष निकालिए:

Answer 4 :

दिया है- ΔABC में रेखाखण्ड AC = 13 सेमी।
BC =5 सेमी तथा ∠B = 90°
रचना करनी है- ΔABC की।
रचना-
1. सर्वप्रथम रेखाखण्ड BC = 5 सेमी खींचा।
2. बिन्दु B परकार व पटरी की सहायता से 90° का कोण बनाती हुई रेखा BX खींची।
3. बिन्दु C रेखाखण्ड AC = 13 सेमी लेकर रेखा BX पर चिह्न A लगाया। A से C को मिलाया।
4. अतः यही ΔABC अभीष्ट त्रिभुज है।


Selected

 

Chapter 13- त्रिभुज Ex-13-e Contributors

krishan

Share your email for latest updates

Name:
Email:

Our partners