• +91 9971497814
  • info@interviewmaterial.com

Chapter 7- त्रिभुज (Triangles) Ex-7.1 Interview Questions Answers

Question 1 : चतुर्भुज ACBD में, AC = AD है और रेखाखण्ड AB, ∠A को समद्विभाजित करता है। दर्शाइए कि ∆ABC = ∆ABD है। BC और BD के बारे में आप क्या कह सकते हैं?

Answer 1 :

दिया है : ACBD एक चतुर्भुज है जिसमें भुजा AC = AD है और रेखाखण्ड AB, ∠A को समद्विभाजित करता है।
सिद्ध करना है : ∆ABC = ∆ABD; और
ज्ञात करना है : BC और BD में सम्बन्ध।
उपपत्ति: ∆ABC और ∆ABD की तुलना करने पर,
AC = AD (दिया है)
∠CAB = ∠DAB (दिया है)।
AB = AB (उभयनिष्ठ है)
∆ABC = ∆ABD (S.A.S. से)
Proved.
BC = BD

Question 2 :
ABCD एक चतुर्भुज है जिसमें AD = BC और ∠DAB = ∠ CBA है। सिद्ध कीजिए कि
(i) ∆ABD = ∆BAC
(ii) BD = AC
(iii) ∠ABD = ∠BAC

Answer 2 :

दिया है : चतुर्भुज ABCD में AD = BC और ∠DAB = ∠CBA
सिद्ध करना है :
(i) ∆ABD = ∆BAC
(ii) BD = AC
(iii) ∠ ABD = ∠BAC
उपपत्ति (i) ∆ABD और ∆BAC में,
AD = BC (दिया है)
∠DAB = ∠CBA (दिया है)
AB = AB (उभयनिष्ठ है)
∆ABD = ∆BAC (S.A.S. से)
(ii) सर्वांगसम त्रिभुजों में संगत मापें बराबर होती हैं और ∆ABD और ∆BAC सर्वांगसम हैं।
संगत भुजाएँ BD = AC
(iii) ∆ABD = ∆BAC
∠ABD = ∠BAC (C.P.C.T.) Proved.

Question 3 : एक रेखाखण्ड AB पर AD और BC दो बराबर लम्ब रेखाखण्ड हैं। दर्शाइए कि CD, रेखाखण्ड AB को समद्विभाजित करता है।एक रेखाखण्ड AB पर AD और BC दो बराबर लम्ब रेखाखण्ड हैं। दर्शाइए कि CD, रेखाखण्ड AB को समद्विभाजित करता है।         
   

Answer 3 :

दिया है : AB एक रेखाखण्ड है जिसके सिरों A तथा B पर क्रमश: AD और BC लम्ब इस प्रकार हैं कि AD = BC
सिद्ध करना है : CD, रेखाखण्ड AB को समद्विभाजित करता है।
उपपत्ति: प्रश्नानुसार, ∠DAB = 90° ⇒ ∠ DAO = 90°
तथा ∠CBA = 90° ⇒ ∠CBO = 90°
∠DAO = ∠CBO …(1)
∠AOD = ∠COB …(2) (शीर्षाभिमुख कोण)
(1) और (2) को जोड़ने पर,
∠DAO + ∠AOD = ∠CBO + ∠COB
⇒ 180° – ∠ADO = 180° – ∠BCO (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
⇒ ∠ODA = ∠OCB …(3)
अब ∆AOD व ∆BOC में,
∠DAO = ∠CBO [समीकरण (1) से]
AD = BC (दिया है)
∠ODA = ∠OCB [ समीकण (3) से]
∆AOD = ∆BOC (S.A.S. से)
AO = BO (C.P.C.T.)
रेखाखण्ड AB बिन्दु O पर समद्विभाजित होता है।
अत: CD, रेखाखण्ड AB को बिन्दु0 पर समद्विभाजित करता है।
Proved.

Question 4 : l और m दो समान्तर रेखाएँ हैं जिन्हें समान्तर रेखाओं pऔर qका एक अन्य युग्म प्रतिच्छेदित करता है। दर्शाइए कि ∆ABC = ∆CDA

Answer 4 :

दिया है। l और m दो समान्तर रेखाएँ हैं जिनको एक अन्य दो समान्तर रेखाओं p और q का युग्म बिन्दुओं A, B, C और D पर प्रतिच्छेदित करता है। रेखाखण्डे AC खींचा गया है।
सिद्ध करना है : ∆ABC = ∆CDA
उपपत्ति : l || m और AC एक तिर्यक रेखाखण्ड इन्हें प्रतिच्छेदित करता है।
∠DAC = ∠ BCA (एकान्तर कोण युग्म)
इसी प्रकार, p || q है और AC एक तिर्यक रेखाखण्ड इन्हें प्रतिच्छेदित करता है।
∠DCA = ∠BAC (एकान्तर कोण युग्म)
अब ∆ABC और ∆CDA में, ∠BCA = ∠DAC (ऊमर सिद्ध किया है)
AC = AC (उभयनिष्ठ है)
∠BAC = ∠DCA (ऊपर सिद्ध किया है)
∆BC = ∆CDA (A.S.A से)
Proved.

Question 5 :
रेखा l कोण A को समद्विभाजित करती है और B रेखा पर स्थित कोई बिन्दु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लम्ब हैं। दर्शाइए कि
(i) ∆APB = ∆AQB
(ii) BP = BQ अर्थात बिन्दु B कोण A की भुजाओं से समदूरस्थ है।

Answer 5 :

दिया है। एक रेखा है जो ∠A को समद्विभाजित करती है। रेखा l पर कोई बिन्दु B स्थित है। बिन्दु B से ∠ A की भुजाओं AP और AQ पर क्रमशः BP और BQ लम्ब खींचे गए हैं।
सिद्ध करना है : (i) ∆APB = ∆AQB,
(ii) BP = BQ अर्थात् बिन्दु B कोण ∆की भुजाओं से समदूरस्थ है।
उपपत्ति : (i) BP ⊥ AP और BQ ⊥ AQ
∠P = 90° और ∠Q = 90° …(1)
A रेखा l, ∠A को समद्विभाजित करती है।
∠QAB = ∠PAB
∠QAB= ∠PAB = x° …(2)
तब ∆APB और ∆AQB के अन्त:कोणों के योग की समानता से,
∠ABP + ∠PAB + ∠P = ∠ABQ + ∠QAB + ∠Q
∠ABP + x + 90° = ∠ABQ + x° + 90° [समीकरण (1) तथा (2) से]
∠ABP =∠ABQ
Proved.
अब ∆APB और ∆AQB में, ∠PAB = ∠QAB (दिया है)
AB = AB (उभयनिष्ठ है)
∠ABP = ∠ABQ (अभी सिद्ध किया है)
∆APB = ∆AQB (A.S.A से)
(ii) : ∆APB = ∆AQB
BP= BQ (C.P.C.T.)
अर्थात बिन्दु B, ∠A की भुजाओं से समदूरस्थ है।
Proved.

Question 6 : दी गई आकृति में, AC = AE, AB = AD और ∠BAD = ∠EAC है, दर्शाइए कि BC = DE है।

Answer 6 :

दिया है : दी गई आकृति के ∆ABD में AB = AD तथा ∆ACE में AC = AE है और ∠BAD = ∠EAC। रेखाखण्ड DE खींचा। गया है।
सिद्ध करना है : BC = DE
उपपत्ति : ∠ BAD = ∠ EAC दोनों ओर ∠DAC जोड़ने पर,
∠BAD + ∠DAC = ∠EAC + ∠DAC
∠BAC = ∠DAE
अब ∆ABC तथा ∆ADE में,
AB = AD (दिया है)
∠BAC = ∠DAE [समीकरण (1) से]
AC = AE (दिया है)
∆ABC = ∆DE (S.A.S. से)
अतः BC = DE (C.P.C.T.)
Proved.

Question 7 :
AB एक रेखाखण्ड है और Pइसका मध्य बिन्दु है। D और E रेखाखण्ड AB के एक ही ओर स्थित दो बिन्दु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। दर्शाइए कि
(i) ∆DAP = ∆EBP
(ii) AD = BE

Answer 7 :

दिया है : AB एक रेखाखण्ड है जिसका मध्य-बिन्दु P है। AB के एक ही ओर दो बिन्दु D और E हैं। D से रेखाखण्ड DA और DP खींचे गए हैं और E से रेखाखण्ड EB और EP खींचे गए हैं जिससे ∠BAD = ∠ABE तथा ∠EPA = ∠DPB है।
सिद्ध करना है :
(i) ∆DAP = ∆EBP
(ii) AD = BE
उपपत्ति (i) P, AB का मध्य बिन्दु है जिससे AP= BP
और ∠BAD = ∠ABE (दिया है)
∠PAD = ∠PBE
हमें ज्ञात है कि ∠EPA = ∠DPB
दोनों पक्षों में ∠EPD जोड़ने पर,
∠EPA + ∠ EPD = ∠DPB + ∠EPD
∠DPA = ∠EPB (चित्र से)
अब ∆DAP तथा ∆EBP में, ∠DPA = ∠ EPB (अभी सिद्ध किया है)
AP = BP (P, AB का मध्य-बिन्दु है)
∠PAD = ∠PBE (सिद्ध कर चुके हैं)
∆DAP = ∆EBP (A.S.A. से)
(ii) ∆DAP = ∆EBP
AD = BE (C.P.C.T.)
Proved.

Question 8 :
एक समकोण त्रिभुज ABC में, जिसमें ∠C समकोण है, M कर्ण AB का मध्य बिन्दु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है कि DM = CM है। बिन्दु D को बिन्दु B से मिला दिया जाता है। दर्शाइए कि :
(i) ∆AMC = ∆BMD
(ii) ∠DBC एक समकोण है।
(iii) ∆DBC = ∆ACB
(iv) CM =  AB

Answer 8 :

दिया है: ABC एक समकोण त्रिभुज है जिसमें ∠C = 90° है तथा कर्ण AB को मध्य-बिन्दु M है। रेखाखण्ड CM खींचकर इसे बिन्दु D तक इस प्रकार बढ़ाया गया है कि CM = DM है। बिन्दु D को बिन्दु B से मिलाकर रेखा BD खींची गई है।
सिद्ध करना है :
(i) ∆AMC = ∆BMD
(ii) ∠DBC एक समकोण है।
(iii) ∆DBC = ∆ACB
(iv) CM = AB
उपपत्ति : (i) ∆AMC और ∆BMD में,
AM = BM (M, AB का मध्य-बिन्दु है)
∠AMC = ∠BMD (शीर्षाभिमुख कोण)
CM = DM (दिया है)
∆AMC = ∆BMD (S.A.S. से)
(ii) ∆AMC = ∆BMD
∠MAC = ∠ MBD
AC || BD
∠DBC + ∠ACB = 180°
∠DBC + 90° = 180°
(iii) ∆DBC और ∆ACB में,
DB = AC (C.P.C.T.) [∆AMC = ∆BMD]
∠DBC = ∠ACB [ भाग (ii) से ]
BC = BC (उभयनिष्ठ)
∆DBC = ∆ACB (S.A.S. से)
(iv) DC = AB (C.P.C.T.)
2CM = AB (DM = CM)
CM =  AB
Proved.


Selected

 

Chapter 7- त्रिभुज (Triangles) Ex-7.1 Contributors

krishan

Share your email for latest updates

Name:
Email:

Our partners